gnuk/src/usb_lld.c

1213 lines
28 KiB
C
Raw Normal View History

2010-08-18 03:57:45 +00:00
#include "ch.h"
#include "hal.h"
#include "usb_lld.h"
2012-05-10 10:01:01 +00:00
#define USB_MAX_PACKET_SIZE 64 /* For FS device */
#define RECIPIENT 0x1F /* Mask to get recipient */
enum STANDARD_REQUESTS
{
GET_STATUS = 0,
CLEAR_FEATURE,
RESERVED1,
SET_FEATURE,
RESERVED2,
SET_ADDRESS,
GET_DESCRIPTOR,
SET_DESCRIPTOR,
GET_CONFIGURATION,
SET_CONFIGURATION,
GET_INTERFACE,
SET_INTERFACE,
SYNCH_FRAME,
TOTAL_REQUEST /* Total number of Standard request */
};
/* The state machine states of a control pipe */
enum CONTROL_STATE
{
2012-05-17 03:45:51 +00:00
WAIT_SETUP,
SETTING_UP,
IN_DATA,
OUT_DATA,
LAST_IN_DATA,
WAIT_STATUS_IN,
WAIT_STATUS_OUT,
STALLED,
PAUSE
2012-05-10 10:01:01 +00:00
};
enum FEATURE_SELECTOR
{
ENDPOINT_STALL,
DEVICE_REMOTE_WAKEUP
};
struct DATA_INFO
{
uint16_t len;
uint16_t offset;
uint8_t *addr;
uint8_t require_zlp;
};
struct CONTROL_INFO
{
uint8_t bmRequestType;
uint8_t bRequest;
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
};
struct DEVICE_INFO
{
uint8_t current_configuration;
uint8_t current_feature;
uint8_t state;
};
static struct CONTROL_INFO *ctrl_p;
static struct DEVICE_INFO *dev_p;
static struct DATA_INFO *data_p;
#define REG_BASE (0x40005C00UL) /* USB_IP Peripheral Registers base address */
#define PMA_ADDR (0x40006000UL) /* USB_IP Packet Memory Area base address */
/* Control register */
#define CNTR ((__IO uint16_t *)(REG_BASE + 0x40))
/* Interrupt status register */
#define ISTR ((__IO uint16_t *)(REG_BASE + 0x44))
/* Frame number register */
#define FNR ((__IO uint16_t *)(REG_BASE + 0x48))
/* Device address register */
#define DADDR ((__IO uint16_t *)(REG_BASE + 0x4C))
/* Buffer Table address register */
#define BTABLE ((__IO uint16_t *)(REG_BASE + 0x50))
#define ISTR_CTR (0x8000) /* Correct TRansfer (clear-only bit) */
#define ISTR_DOVR (0x4000) /* DMA OVeR/underrun (clear-only bit) */
#define ISTR_ERR (0x2000) /* ERRor (clear-only bit) */
#define ISTR_WKUP (0x1000) /* WaKe UP (clear-only bit) */
#define ISTR_SUSP (0x0800) /* SUSPend (clear-only bit) */
#define ISTR_RESET (0x0400) /* RESET (clear-only bit) */
#define ISTR_SOF (0x0200) /* Start Of Frame (clear-only bit) */
#define ISTR_ESOF (0x0100) /* Expected Start Of Frame (clear-only bit) */
#define ISTR_DIR (0x0010) /* DIRection of transaction (read-only bit) */
#define ISTR_EP_ID (0x000F) /* EndPoint IDentifier (read-only bit) */
#define CLR_CTR (~ISTR_CTR) /* clear Correct TRansfer bit */
#define CLR_DOVR (~ISTR_DOVR) /* clear DMA OVeR/underrun bit*/
#define CLR_ERR (~ISTR_ERR) /* clear ERRor bit */
#define CLR_WKUP (~ISTR_WKUP) /* clear WaKe UP bit */
#define CLR_SUSP (~ISTR_SUSP) /* clear SUSPend bit */
#define CLR_RESET (~ISTR_RESET) /* clear RESET bit */
#define CLR_SOF (~ISTR_SOF) /* clear Start Of Frame bit */
#define CLR_ESOF (~ISTR_ESOF) /* clear Expected Start Of Frame bit */
#define CNTR_CTRM (0x8000) /* Correct TRansfer Mask */
#define CNTR_DOVRM (0x4000) /* DMA OVeR/underrun Mask */
#define CNTR_ERRM (0x2000) /* ERRor Mask */
#define CNTR_WKUPM (0x1000) /* WaKe UP Mask */
#define CNTR_SUSPM (0x0800) /* SUSPend Mask */
#define CNTR_RESETM (0x0400) /* RESET Mask */
#define CNTR_SOFM (0x0200) /* Start Of Frame Mask */
#define CNTR_ESOFM (0x0100) /* Expected Start Of Frame Mask */
#define CNTR_RESUME (0x0010) /* RESUME request */
#define CNTR_FSUSP (0x0008) /* Force SUSPend */
#define CNTR_LPMODE (0x0004) /* Low-power MODE */
#define CNTR_PDWN (0x0002) /* Power DoWN */
#define CNTR_FRES (0x0001) /* Force USB RESet */
#define DADDR_EF (0x80)
#define DADDR_ADD (0x7F)
#define EP_CTR_RX (0x8000) /* EndPoint Correct TRansfer RX */
#define EP_DTOG_RX (0x4000) /* EndPoint Data TOGGLE RX */
#define EPRX_STAT (0x3000) /* EndPoint RX STATus bit field */
#define EP_SETUP (0x0800) /* EndPoint SETUP */
#define EP_T_FIELD (0x0600) /* EndPoint TYPE */
#define EP_KIND (0x0100) /* EndPoint KIND */
#define EP_CTR_TX (0x0080) /* EndPoint Correct TRansfer TX */
#define EP_DTOG_TX (0x0040) /* EndPoint Data TOGGLE TX */
#define EPTX_STAT (0x0030) /* EndPoint TX STATus bit field */
#define EPADDR_FIELD (0x000F) /* EndPoint ADDRess FIELD */
#define EPREG_MASK (EP_CTR_RX|EP_SETUP|EP_T_FIELD|EP_KIND|EP_CTR_TX|EPADDR_FIELD)
/* STAT_TX[1:0] STATus for TX transfer */
#define EP_TX_DIS (0x0000) /* EndPoint TX DISabled */
#define EP_TX_STALL (0x0010) /* EndPoint TX STALLed */
#define EP_TX_NAK (0x0020) /* EndPoint TX NAKed */
#define EP_TX_VALID (0x0030) /* EndPoint TX VALID */
#define EPTX_DTOG1 (0x0010) /* EndPoint TX Data TOGgle bit1 */
#define EPTX_DTOG2 (0x0020) /* EndPoint TX Data TOGgle bit2 */
/* STAT_RX[1:0] STATus for RX transfer */
#define EP_RX_DIS (0x0000) /* EndPoint RX DISabled */
#define EP_RX_STALL (0x1000) /* EndPoint RX STALLed */
#define EP_RX_NAK (0x2000) /* EndPoint RX NAKed */
#define EP_RX_VALID (0x3000) /* EndPoint RX VALID */
#define EPRX_DTOG1 (0x1000) /* EndPoint RX Data TOGgle bit1 */
#define EPRX_DTOG2 (0x2000) /* EndPoint RX Data TOGgle bit1 */
static void usb_handle_transfer (void);
static void st103_set_btable (void)
{
*BTABLE = 0;
}
static uint16_t st103_get_istr (void)
{
return *ISTR;
}
static void st103_set_istr (uint16_t istr)
{
*ISTR = istr;
}
static void st103_set_cntr (uint16_t cntr)
{
*CNTR = cntr;
}
static void st103_set_daddr (uint16_t daddr)
{
*DADDR = daddr | DADDR_EF;
}
static void st103_set_epreg (uint8_t ep_num, uint16_t value)
{
uint16_t *reg_p = (uint16_t *)(REG_BASE + ep_num*4);
*reg_p = value;
}
static uint16_t st103_get_epreg (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(REG_BASE + ep_num*4);
return *reg_p;
}
static void st103_set_tx_addr (uint8_t ep_num, uint16_t addr)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+0)*2);
*reg_p = addr;
}
static uint16_t st103_get_tx_addr (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+0)*2);
return *reg_p;
}
static void st103_set_tx_count (uint8_t ep_num, uint16_t size)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+2)*2);
*reg_p = size;
}
static uint16_t st103_get_tx_count (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+2)*2);
return *reg_p & 0x03ff;
}
static void st103_set_rx_addr (uint8_t ep_num, uint16_t addr)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+4)*2);
*reg_p = addr;
}
static uint16_t st103_get_rx_addr (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+4)*2);
return *reg_p;
}
static void st103_set_rx_buf_size (uint8_t ep_num, uint16_t size)
{ /* Assume size is even */
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+6)*2);
uint16_t value;
if (size <= 62)
value = (size & 0x3e) << 9;
else
value = 0x8000 | (((size >> 5) - 1) << 10);
*reg_p = value;
}
static uint16_t st103_get_rx_count (uint8_t ep_num)
{
uint16_t *reg_p = (uint16_t *)(PMA_ADDR + (ep_num*8+6)*2);
return *reg_p & 0x03ff;
}
static void st103_ep_clear_ctr_rx (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num) & ~EP_CTR_RX & EPREG_MASK;
st103_set_epreg (ep_num, value);
}
static void st103_ep_clear_ctr_tx (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num) & ~EP_CTR_TX & EPREG_MASK;
st103_set_epreg (ep_num, value);
}
static void st103_ep_set_rxtx_status (uint8_t ep_num, uint16_t st_rx,
uint16_t st_tx)
{
uint16_t value = st103_get_epreg (ep_num);
value &= (EPREG_MASK|EPRX_STAT|EPTX_STAT);
value ^= (EPRX_DTOG1 & st_rx);
value ^= (EPRX_DTOG2 & st_rx);
value ^= (EPTX_DTOG1 & st_tx);
value ^= (EPTX_DTOG2 & st_tx);
value |= EP_CTR_RX | EP_CTR_TX;
st103_set_epreg (ep_num, value);
}
static void st103_ep_set_rx_status (uint8_t ep_num, uint16_t st_rx)
{
uint16_t value = st103_get_epreg (ep_num);
value &= (EPREG_MASK|EPRX_STAT);
value ^= (EPRX_DTOG1 & st_rx);
value ^= (EPRX_DTOG2 & st_rx);
value |= EP_CTR_RX | EP_CTR_TX;
st103_set_epreg (ep_num, value);
}
static uint16_t st103_ep_get_rx_status (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num);
return value & EPRX_STAT;
}
static void st103_ep_set_tx_status (uint8_t ep_num, uint16_t st_tx)
{
uint16_t value = st103_get_epreg (ep_num);
value &= (EPREG_MASK|EPTX_STAT);
value ^= (EPTX_DTOG1 & st_tx);
value ^= (EPTX_DTOG2 & st_tx);
value |= EP_CTR_RX | EP_CTR_TX;
st103_set_epreg (ep_num, value);
}
static uint16_t st103_ep_get_tx_status (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num);
return value & EPTX_STAT;
}
static void st103_ep_clear_dtog_rx (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num);
if ((value & EP_DTOG_RX))
{
value &= EPREG_MASK;
value |= EP_CTR_RX | EP_CTR_TX | EP_DTOG_RX;
st103_set_epreg (ep_num, value);
}
}
static void st103_ep_clear_dtog_tx (uint8_t ep_num)
{
uint16_t value = st103_get_epreg (ep_num);
if ((value & EP_DTOG_TX))
{
value &= EPREG_MASK;
value |= EP_CTR_RX | EP_CTR_TX | EP_DTOG_TX;
st103_set_epreg (ep_num, value);
}
}
static const struct usb_device_method* method_p;
static void
usb_interrupt_handler (void)
{
uint16_t istr_value = st103_get_istr ();
if (istr_value & ISTR_CTR)
usb_handle_transfer ();
if (istr_value & ISTR_RESET)
{
st103_set_istr (CLR_RESET);
method_p->reset ();
}
if (istr_value & ISTR_DOVR)
st103_set_istr (CLR_DOVR);
if (istr_value & ISTR_ERR)
st103_set_istr (CLR_ERR);
}
2010-08-18 03:57:45 +00:00
CH_IRQ_HANDLER (Vector90) {
CH_IRQ_PROLOGUE();
2010-08-19 08:09:59 +00:00
chSysLockFromIsr();
2010-08-18 03:57:45 +00:00
2012-05-10 10:01:01 +00:00
usb_interrupt_handler ();
2010-08-18 03:57:45 +00:00
2010-08-19 08:09:59 +00:00
chSysUnlockFromIsr();
2010-08-18 03:57:45 +00:00
CH_IRQ_EPILOGUE();
}
2012-05-10 10:01:01 +00:00
static void handle_datastage_out (void)
{
if (data_p->addr && data_p->len)
{
uint8_t *buf;
uint32_t len = USB_MAX_PACKET_SIZE;
if (len > data_p->len)
len = data_p->len;
buf = data_p->addr + data_p->offset;
data_p->len -= len;
data_p->offset += len;
usb_lld_from_pmabuf (buf, st103_get_rx_addr (ENDP0), len);
}
2012-05-17 03:45:51 +00:00
if (data_p->len == 0)
2012-05-10 10:01:01 +00:00
{
2012-05-17 03:45:51 +00:00
dev_p->state = WAIT_STATUS_IN;
2012-05-10 10:01:01 +00:00
st103_set_tx_count (ENDP0, 0);
2012-05-17 03:45:51 +00:00
st103_ep_set_rxtx_status (ENDP0, EP_RX_STALL, EP_TX_VALID);
2012-05-10 10:01:01 +00:00
}
else
2012-05-17 03:45:51 +00:00
{
st103_ep_set_rx_status (ENDP0, EP_RX_VALID);
dev_p->state = OUT_DATA;
}
2012-05-10 10:01:01 +00:00
}
static void handle_datastage_in (void)
{
uint32_t len = USB_MAX_PACKET_SIZE;;
const uint8_t *buf;
if ((data_p->len == 0) && (dev_p->state == LAST_IN_DATA))
{
if (data_p->require_zlp == TRUE)
{
data_p->require_zlp = FALSE;
/* No more data to send. Send empty packet */
st103_set_tx_count (ENDP0, 0);
st103_ep_set_tx_status (ENDP0, EP_TX_VALID);
}
else
{
2012-05-17 03:45:51 +00:00
/* No more data to send, but receive OUT.*/
2012-05-10 10:01:01 +00:00
dev_p->state = WAIT_STATUS_OUT;
2012-05-17 03:45:51 +00:00
st103_ep_set_rxtx_status (ENDP0, EP_RX_VALID, EP_TX_STALL);
2012-05-10 10:01:01 +00:00
}
2012-05-17 03:45:51 +00:00
2012-05-10 10:01:01 +00:00
return;
}
dev_p->state = (data_p->len <= len) ? LAST_IN_DATA : IN_DATA;
if (len > data_p->len)
len = data_p->len;
buf = (const uint8_t *)data_p->addr + data_p->offset;
usb_lld_to_pmabuf (buf, st103_get_tx_addr (ENDP0), len);
data_p->len -= len;
data_p->offset += len;
2012-05-17 03:45:51 +00:00
st103_set_tx_count (ENDP0, len);
st103_ep_set_tx_status (ENDP0, EP_TX_VALID);
2012-05-10 10:01:01 +00:00
}
typedef int (*HANDLER) (uint8_t rcp,
uint16_t value, uint16_t index, uint16_t length);
static int std_none (uint8_t rcp,
uint16_t value, uint16_t index, uint16_t length)
{
(void)rcp; (void)value; (void)index; (void)length;
return USB_UNSUPPORT;
}
static int std_get_status (uint8_t rcp,
uint16_t value, uint16_t index, uint16_t length)
{
static uint16_t status_info;
status_info = 0; /* Reset Status Information */
data_p->addr = (uint8_t *)&status_info;
if (value != 0 || length != 2 || (index >> 8) != 0)
return USB_UNSUPPORT;
if (rcp == DEVICE_RECIPIENT)
{
if (index == 0)
{
/* Get Device Status */
uint8_t feature = dev_p->current_feature;
/* Remote Wakeup enabled */
if ((feature & (1 << 5)))
status_info |= 2;
else
status_info &= ~2;
/* Bus-powered */
if ((feature & (1 << 6)))
status_info |= 1;
else /* Self-powered */
status_info &= ~1;
data_p->len = 2;
return USB_SUCCESS;
}
}
else if (rcp == INTERFACE_RECIPIENT)
{
int r;
if (dev_p->current_configuration == 0)
return USB_UNSUPPORT;
r = (*method_p->interface) (USB_QUERY_INTERFACE, index, 0);
if (r != USB_SUCCESS)
return USB_UNSUPPORT;
data_p->len = 2;
return USB_SUCCESS;
}
else if (rcp == ENDPOINT_RECIPIENT)
{
uint8_t endpoint = (index & 0x0f);
uint16_t status;
if ((index & 0x70) != 0 || endpoint == ENDP0)
return USB_UNSUPPORT;
if ((index & 0x80))
{
status = st103_ep_get_tx_status (endpoint);
if (status == 0) /* Disabled */
return USB_UNSUPPORT;
else if (status == EP_TX_STALL)
status_info |= 1; /* IN Endpoint stalled */
}
else
{
status = st103_ep_get_rx_status (endpoint);
if (status == 0) /* Disabled */
return USB_UNSUPPORT;
else if (status == EP_RX_STALL)
status_info |= 1; /* OUT Endpoint stalled */
}
data_p->len = 2;
return USB_SUCCESS;
}
return USB_UNSUPPORT;
}
static int std_clear_feature (uint8_t rcp, uint16_t value,
uint16_t index, uint16_t length)
{
if (rcp == DEVICE_RECIPIENT)
{
if (length != 0 || index != 0)
return USB_UNSUPPORT;
if (value == DEVICE_REMOTE_WAKEUP)
{
dev_p->current_feature &= ~(1 << 5);
return USB_SUCCESS;
}
}
else if (rcp == ENDPOINT_RECIPIENT)
{
uint8_t endpoint = (index & 0x0f);
uint16_t status;
if (dev_p->current_configuration == 0)
return USB_UNSUPPORT;
if (length != 0 || (index >> 8) != 0 || value != ENDPOINT_STALL
|| endpoint == ENDP0)
return USB_UNSUPPORT;
if ((index & 0x80))
status = st103_ep_get_tx_status (endpoint);
else
status = st103_ep_get_rx_status (endpoint);
if (status == 0) /* Disabled */
return USB_UNSUPPORT;
if (index & 0x80)
{ /* IN endpoint */
if (st103_ep_get_tx_status (endpoint) == EP_TX_STALL)
{
st103_ep_clear_dtog_tx (endpoint);
st103_ep_set_tx_status (endpoint, EP_TX_VALID);
}
}
else
{ /* OUT endpoint */
if (st103_ep_get_rx_status (endpoint) == EP_RX_STALL)
{
st103_ep_clear_dtog_rx (endpoint);
st103_ep_set_rx_status (endpoint, EP_RX_VALID);
}
}
// event??
return USB_SUCCESS;
}
return USB_UNSUPPORT;
}
static int std_set_feature (uint8_t rcp, uint16_t value,
uint16_t index, uint16_t length)
{
if (rcp == DEVICE_RECIPIENT)
{
if (length != 0 || index != 0)
return USB_UNSUPPORT;
if (value == DEVICE_REMOTE_WAKEUP)
{
dev_p->current_feature |= 1 << 5;
// event??
return USB_SUCCESS;
}
}
else if (rcp == ENDPOINT_RECIPIENT)
{
uint8_t endpoint = (index & 0x0f);
uint32_t status;
if (dev_p->current_configuration == 0)
return USB_UNSUPPORT;
if (length != 0 || (index >> 8) != 0 || value != 0 || endpoint == ENDP0)
return USB_UNSUPPORT;
if ((index & 0x80))
status = st103_ep_get_tx_status (endpoint);
else
status = st103_ep_get_rx_status (endpoint);
if (status == 0) /* Disabled */
return USB_UNSUPPORT;
if (index & 0x80)
/* IN endpoint */
st103_ep_set_tx_status (endpoint, EP_TX_STALL);
else
/* OUT endpoint */
st103_ep_set_rx_status (endpoint, EP_RX_STALL);
// event??
return USB_SUCCESS;
}
return USB_UNSUPPORT;
}
static int std_set_address (uint8_t rcp, uint16_t value,
uint16_t index, uint16_t length)
{
if (rcp == DEVICE_RECIPIENT)
{
if (length == 0 && value <= 127 && index == 0
&& dev_p->current_configuration == 0)
return USB_SUCCESS;
}
return USB_UNSUPPORT;
}
static int std_get_descriptor (uint8_t rcp, uint16_t value,
uint16_t index, uint16_t length)
{
(void)length;
if (rcp == DEVICE_RECIPIENT)
return (*method_p->get_descriptor) ((value >> 8), index, value);
return USB_UNSUPPORT;
}
static int std_get_configuration (uint8_t rcp, uint16_t value,
uint16_t index, uint16_t length)
{
(void)value; (void)index; (void)length;
if (rcp == DEVICE_RECIPIENT)
{
data_p->addr = &dev_p->current_configuration;
data_p->len = 1;
return USB_SUCCESS;
}
return USB_UNSUPPORT;
}
static int std_set_configuration (uint8_t rcp, uint16_t value,
uint16_t index, uint16_t length)
{
if (rcp == DEVICE_RECIPIENT && index == 0 && length == 0)
{
int r;
r = (*method_p->event) (USB_EVENT_CONFIG, value);
if (r == USB_SUCCESS)
return USB_SUCCESS;
}
return USB_UNSUPPORT;
}
static int std_get_interface (uint8_t rcp, uint16_t value,
uint16_t index, uint16_t length)
{
if (rcp == INTERFACE_RECIPIENT)
{
if (value != 0 || (index >> 8) != 0 || length != 1)
return USB_UNSUPPORT;
if (dev_p->current_configuration == 0)
return USB_UNSUPPORT;
return (*method_p->interface) (USB_GET_INTERFACE, index, 0);
}
return USB_UNSUPPORT;
}
static int std_set_interface (uint8_t rcp, uint16_t value,
uint16_t index, uint16_t length)
{
if (rcp == INTERFACE_RECIPIENT)
{
int r;
if (length != 0 || (index >> 8) != 0 || (value >> 8) != 0)
return USB_UNSUPPORT;
if (dev_p->current_configuration != 0)
return USB_UNSUPPORT;
r = (*method_p->interface) (USB_SET_INTERFACE, index, value);
if (r == USB_SUCCESS)
return USB_SUCCESS;
}
return USB_UNSUPPORT;
}
static const HANDLER std_request_handler[TOTAL_REQUEST] = {
std_get_status,
std_clear_feature,
std_none,
std_set_feature,
std_none,
std_set_address,
std_get_descriptor,
std_none, /* set_descriptor is not supported */
std_get_configuration,
std_set_configuration,
std_get_interface,
std_set_interface,
std_none, /* sync_frame is not supported (for now) */
};
static void handle_setup0 (void)
{
const uint16_t *pw;
uint16_t w;
uint8_t req;
int r = USB_UNSUPPORT;
HANDLER handler;
uint8_t type_rcp;
pw = (uint16_t *)(PMA_ADDR + (uint8_t *)(st103_get_rx_addr (ENDP0) * 2));
w = *pw++;
ctrl_p->bmRequestType = w & 0xff;
ctrl_p->bRequest = req = w >> 8;
pw++;
ctrl_p->wValue = *pw++;
pw++;
ctrl_p->wIndex = *pw++;
pw++;
ctrl_p->wLength = *pw;
data_p->len = 0;
data_p->offset = 0;
type_rcp = (ctrl_p->bmRequestType & (REQUEST_TYPE | RECIPIENT));
if (type_rcp == (CLASS_REQUEST | INTERFACE_RECIPIENT) /* Interface */
|| (ctrl_p->bmRequestType & REQUEST_TYPE) == VENDOR_REQUEST)
{
if (ctrl_p->wLength == 0)
r = (*method_p->setup_with_nodata) (type_rcp, req, ctrl_p->wIndex);
else
{
(*method_p->setup_with_data) (type_rcp, req, ctrl_p->wIndex);
if (data_p->len != 0)
r = USB_SUCCESS;
}
}
else if ((ctrl_p->bmRequestType & REQUEST_TYPE) == STANDARD_REQUEST)
{
if (req < TOTAL_REQUEST)
{
handler = std_request_handler[req];
r = (*handler) (ctrl_p->bmRequestType & RECIPIENT,
ctrl_p->wValue, ctrl_p->wIndex, ctrl_p->wLength);
}
}
if (r != USB_SUCCESS)
dev_p->state = STALLED;
else
{
2012-05-17 03:45:51 +00:00
if (ctrl_p->bmRequestType & 0x80)
2012-05-10 10:01:01 +00:00
{
uint32_t len = ctrl_p->wLength;
/* Restrict the data length to be the one host asks for */
if (data_p->len > len)
data_p->len = len;
if ((data_p->len % USB_MAX_PACKET_SIZE) == 0)
data_p->require_zlp = TRUE;
else
data_p->require_zlp = FALSE;
2012-05-17 03:45:51 +00:00
dev_p->state = IN_DATA;
2012-05-10 10:01:01 +00:00
handle_datastage_in ();
}
2012-05-17 03:45:51 +00:00
else if (ctrl_p->wLength == 0)
{
dev_p->state = WAIT_STATUS_IN;
st103_set_tx_count (ENDP0, 0);
st103_ep_set_rxtx_status (ENDP0, EP_RX_STALL, EP_TX_VALID);
}
else
2012-05-10 10:01:01 +00:00
{
dev_p->state = OUT_DATA;
2012-05-17 03:45:51 +00:00
st103_ep_set_rxtx_status (ENDP0, EP_RX_VALID, EP_TX_STALL);
2012-05-10 10:01:01 +00:00
}
}
}
static void handle_in0 (void)
{
if (dev_p->state == IN_DATA || dev_p->state == LAST_IN_DATA)
handle_datastage_in ();
else if (dev_p->state == WAIT_STATUS_IN)
{
if ((ctrl_p->bRequest == SET_ADDRESS) &&
((ctrl_p->bmRequestType & (REQUEST_TYPE | RECIPIENT))
== (STANDARD_REQUEST | DEVICE_RECIPIENT)))
{
st103_set_daddr (ctrl_p->wValue);
(*method_p->event) (USB_EVENT_ADDRESS, ctrl_p->wValue);
}
dev_p->state = STALLED;
}
else
dev_p->state = STALLED;
}
static void handle_out0 (void)
{
if (dev_p->state == IN_DATA || dev_p->state == LAST_IN_DATA)
/* host aborts the transfer before finish */
dev_p->state = STALLED;
2012-05-17 03:45:51 +00:00
else if (dev_p->state == OUT_DATA)
2012-05-10 10:01:01 +00:00
handle_datastage_out ();
else if (dev_p->state == WAIT_STATUS_OUT)
dev_p->state = STALLED;
/* Unexpect state, STALL the endpoint */
else
dev_p->state = STALLED;
}
static void nop_proc (void)
{
}
#define WEAK __attribute__ ((weak))
void WEAK EP1_IN_Callback (void);
void WEAK EP2_IN_Callback (void);
void WEAK EP3_IN_Callback (void);
void WEAK EP4_IN_Callback (void);
void WEAK EP5_IN_Callback (void);
void WEAK EP6_IN_Callback (void);
void WEAK EP7_IN_Callback (void);
void WEAK EP1_OUT_Callback (void);
void WEAK EP2_OUT_Callback (void);
void WEAK EP3_OUT_Callback (void);
void WEAK EP4_OUT_Callback (void);
void WEAK EP5_OUT_Callback (void);
void WEAK EP6_OUT_Callback (void);
void WEAK EP7_OUT_Callback (void);
#pragma weak EP1_IN_Callback = nop_proc
#pragma weak EP2_IN_Callback = nop_proc
#pragma weak EP3_IN_Callback = nop_proc
#pragma weak EP4_IN_Callback = nop_proc
#pragma weak EP5_IN_Callback = nop_proc
#pragma weak EP6_IN_Callback = nop_proc
#pragma weak EP7_IN_Callback = nop_proc
#pragma weak EP1_OUT_Callback = nop_proc
#pragma weak EP2_OUT_Callback = nop_proc
#pragma weak EP3_OUT_Callback = nop_proc
#pragma weak EP4_OUT_Callback = nop_proc
#pragma weak EP5_OUT_Callback = nop_proc
#pragma weak EP6_OUT_Callback = nop_proc
#pragma weak EP7_OUT_Callback = nop_proc
void (*const ep_intr_handler_IN[7]) (void) = {
EP1_IN_Callback,
EP2_IN_Callback,
EP3_IN_Callback,
EP4_IN_Callback,
EP5_IN_Callback,
EP6_IN_Callback,
EP7_IN_Callback,
};
void (*const ep_intr_handler_OUT[7]) (void) = {
EP1_OUT_Callback,
EP2_OUT_Callback,
EP3_OUT_Callback,
EP4_OUT_Callback,
EP5_OUT_Callback,
EP6_OUT_Callback,
EP7_OUT_Callback,
};
static void
usb_handle_transfer (void)
{
uint16_t ep_value = 0;
uint16_t istr_value;
uint8_t ep_index;
while (((istr_value = st103_get_istr ()) & ISTR_CTR) != 0)
{
ep_index = (istr_value & ISTR_EP_ID);
if (ep_index == 0)
{
if ((istr_value & ISTR_DIR) == 0)
{ /* DIR = 0 */
/* DIR = 0 => IN int */
/* DIR = 0 implies that (EP_CTR_TX = 1) always */
st103_ep_clear_ctr_tx (ENDP0);
handle_in0 ();
}
else
{ /* DIR = 1 */
/* DIR = 1 & CTR_RX => SETUP or OUT int */
/* DIR = 1 & (CTR_TX | CTR_RX) => 2 int pending */
ep_value = st103_get_epreg (ENDP0);
if ((ep_value & EP_SETUP) != 0)
{
st103_ep_clear_ctr_rx (ENDP0);
handle_setup0 ();
}
else if ((ep_value & EP_CTR_RX) != 0)
{
st103_ep_clear_ctr_rx (ENDP0);
handle_out0 ();
}
}
if (dev_p->state == STALLED)
st103_ep_set_rxtx_status (ENDP0, EP_RX_STALL, EP_TX_STALL);
}
else
{
/* Decode and service non control endpoints interrupt */
/* process related endpoint register */
ep_value = st103_get_epreg (ep_index);
if ((ep_value & EP_CTR_RX) != 0)
{
st103_ep_clear_ctr_rx (ep_index);
(*ep_intr_handler_OUT[ep_index-1]) ();
}
if ((ep_value & EP_CTR_TX) != 0)
{
st103_ep_clear_ctr_tx (ep_index);
(*ep_intr_handler_IN[ep_index-1]) ();
}
}
}
}
static struct CONTROL_INFO Control_Info;
static struct DEVICE_INFO Device_Info;
static struct DATA_INFO Data_Info;
void usb_lld_reset (void)
{
st103_set_btable ();
st103_set_daddr (0);
}
void usb_lld_init (void)
{
2010-08-18 03:57:45 +00:00
RCC->APB1ENR |= RCC_APB1ENR_USBEN;
NVICEnableVector (USB_LP_CAN1_RX0_IRQn,
CORTEX_PRIORITY_MASK (STM32_USB_IRQ_PRIORITY));
/*
2010-08-19 08:09:59 +00:00
* Note that we also have other IRQ(s):
* USB_HP_CAN1_TX_IRQn (for double-buffered or isochronous)
* USBWakeUp_IRQn (suspend/resume)
2010-08-18 03:57:45 +00:00
*/
RCC->APB1RSTR = RCC_APB1RSTR_USBRST;
RCC->APB1RSTR = 0;
2012-05-10 10:01:01 +00:00
dev_p = &Device_Info;
ctrl_p = &Control_Info;
data_p = &Data_Info;
dev_p->state = IN_DATA;
method_p = &Device_Method;
method_p->init();
/* Reset USB */
st103_set_cntr (CNTR_FRES);
st103_set_cntr (0);
/* Clear Interrupt Status Register, and enable interrupt for USB */
st103_set_istr (0);
st103_set_cntr (CNTR_CTRM | CNTR_RESETM);
}
void usb_lld_txcpy (const void *src,
int ep_num, int offset, size_t len)
{
usb_lld_to_pmabuf (src, st103_get_tx_addr (ep_num) + offset, len);
}
void usb_lld_write (uint8_t ep_num, const void *buf, size_t len)
{
usb_lld_to_pmabuf (buf, st103_get_tx_addr (ep_num), len);
st103_set_tx_count (ep_num, len);
st103_ep_set_tx_status (ep_num, EP_TX_VALID);
}
void usb_lld_rxcpy (uint8_t *dst,
int ep_num, int offset, size_t len)
{
usb_lld_from_pmabuf (dst, st103_get_rx_addr (ep_num) + offset, len);
}
void usb_lld_tx_enable (int ep_num, size_t len)
{
st103_set_tx_count (ep_num, len);
st103_ep_set_tx_status (ep_num, EP_TX_VALID);
}
int usb_lld_tx_data_len (int ep_num)
{
return st103_get_tx_count (ep_num);
}
int usb_lld_rx_data_len (int ep_num)
{
return st103_get_rx_count (ep_num);
}
void usb_lld_stall_tx (int ep_num)
{
st103_ep_set_tx_status (ep_num, EP_TX_STALL);
}
void usb_lld_stall_rx (int ep_num)
{
st103_ep_set_rx_status (ep_num, EP_RX_STALL);
}
void usb_lld_rx_enable (int ep_num)
{
st103_ep_set_rx_status (ep_num, EP_RX_VALID);
}
void usb_lld_setup_endpoint (int ep_num, int ep_type, int ep_kind,
int ep_rx_addr, int ep_tx_addr,
int ep_rx_buf_size)
{
uint16_t epreg_value = st103_get_epreg (ep_num);
uint16_t ep_rxtx_status = 0; /* Both disabled */
/* Clear: Write 1 if 1: EP_DTOG_RX, EP_DTOG_TX */
/* Set: Write: EP_T_FIELD, EP_KIND, EPADDR_FIELD */
/* Set: Toggle: EPRX_STAT, EPTX_STAT */
epreg_value &= (EPRX_STAT | EP_SETUP | EPTX_STAT | EP_DTOG_RX | EP_DTOG_TX);
#if USB_KEEP_CORRECT_TRANSFER_FLAGS
/* Keep: Write 1: EP_CTR_RX, EP_CTR_TX */
epreg_value |= (EP_CTR_RX|EP_CTR_TX);
#else
/* Clear: Write 0: EP_CTR_RX, EP_CTR_TX */
#endif
epreg_value |= ep_type;
epreg_value |= ep_kind;
epreg_value |= ep_num;
if (ep_rx_addr)
{
ep_rxtx_status |= EP_RX_VALID;
st103_set_rx_addr (ep_num, ep_rx_addr);
st103_set_rx_buf_size (ep_num, ep_rx_buf_size);
}
if (ep_tx_addr)
{
ep_rxtx_status |= EP_TX_NAK;
st103_set_tx_addr (ep_num, ep_tx_addr);
}
epreg_value ^= (EPRX_DTOG1 & ep_rxtx_status);
epreg_value ^= (EPRX_DTOG2 & ep_rxtx_status);
epreg_value ^= (EPTX_DTOG1 & ep_rxtx_status);
epreg_value ^= (EPTX_DTOG2 & ep_rxtx_status);
st103_set_epreg (ep_num, epreg_value);
}
void usb_lld_set_configuration (uint8_t config)
{
dev_p->current_configuration = config;
}
uint8_t usb_lld_current_configuration (void)
{
return dev_p->current_configuration;
}
void usb_lld_set_feature (uint8_t feature)
{
dev_p->current_feature = feature;
}
void usb_lld_set_data_to_send (const void *p, size_t len)
{
data_p->addr = (uint8_t *)p;
data_p->len = len;
2010-08-18 03:57:45 +00:00
}
2012-01-20 09:18:23 +00:00
2012-05-10 10:01:01 +00:00
void usb_lld_to_pmabuf (const void *src, uint16_t addr, size_t n)
2012-01-20 09:18:23 +00:00
{
const uint8_t *s = (const uint8_t *)src;
uint16_t *p;
uint16_t w;
if (n == 0)
return;
2012-05-10 10:01:01 +00:00
if ((addr & 1))
2012-01-20 09:18:23 +00:00
{
2012-05-10 10:01:01 +00:00
p = (uint16_t *)(PMA_ADDR + (addr - 1) * 2);
2012-01-20 09:18:23 +00:00
w = *p;
w = (w & 0xff) | (*s++) << 8;
*p = w;
p += 2;
n--;
}
else
2012-05-10 10:01:01 +00:00
p = (uint16_t *)(PMA_ADDR + addr * 2);
2012-01-20 09:18:23 +00:00
while (n >= 2)
{
w = *s++;
w |= (*s++) << 8;
*p = w;
p += 2;
n -= 2;
}
if (n > 0)
{
w = *s;
*p = w;
}
}
2012-05-10 10:01:01 +00:00
void usb_lld_from_pmabuf (void *dst, uint16_t addr, size_t n)
2012-01-20 09:18:23 +00:00
{
uint8_t *d = (uint8_t *)dst;
uint16_t *p;
uint16_t w;
if (n == 0)
return;
2012-05-10 10:01:01 +00:00
if ((addr & 1))
2012-01-20 09:18:23 +00:00
{
2012-05-10 10:01:01 +00:00
p = (uint16_t *)(PMA_ADDR + (addr - 1) * 2);
2012-01-20 09:18:23 +00:00
w = *p;
*d++ = (w >> 8);
p += 2;
n--;
}
else
2012-05-10 10:01:01 +00:00
p = (uint16_t *)(PMA_ADDR + addr * 2);
2012-01-20 09:18:23 +00:00
while (n >= 2)
{
w = *p;
*d++ = (w & 0xff);
*d++ = (w >> 8);
p += 2;
n -= 2;
}
if (n > 0)
{
w = *p;
*d = (w & 0xff);
}
}