gnuk/polarssl/library/rsa.c
2013-10-05 12:30:55 +09:00

1544 lines
40 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* The RSA public-key cryptosystem
*
* Copyright (C) 2006-2011, Brainspark B.V.
*
* This file is part of PolarSSL (http://www.polarssl.org)
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* RSA was designed by Ron Rivest, Adi Shamir and Len Adleman.
*
* http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
* http://www.cacr.math.uwaterloo.ca/hac/about/chap8.pdf
*/
#include "polarssl/config.h"
#if defined(POLARSSL_RSA_C)
#include "polarssl/rsa.h"
#if defined(POLARSSL_PKCS1_V21)
#include "polarssl/md.h"
#endif
#include <stdlib.h>
#include <stdio.h>
/*
* Initialize an RSA context
*/
void rsa_init( rsa_context *ctx,
int padding,
int hash_id )
{
memset( ctx, 0, sizeof( rsa_context ) );
ctx->padding = padding;
ctx->hash_id = hash_id;
}
#if defined(POLARSSL_GENPRIME)
/*
* Generate an RSA keypair
*/
int rsa_gen_key( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
unsigned int nbits, int exponent )
{
int ret;
mpi P1, Q1, H, G;
if( f_rng == NULL || nbits < 128 || exponent < 3 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
/*
* find primes P and Q with Q < P so that:
* GCD( E, (P-1)*(Q-1) ) == 1
*/
MPI_CHK( mpi_lset( &ctx->E, exponent ) );
do
{
MPI_CHK( mpi_gen_prime( &ctx->P, ( nbits + 1 ) >> 1, 0,
f_rng, p_rng ) );
MPI_CHK( mpi_gen_prime( &ctx->Q, ( nbits + 1 ) >> 1, 0,
f_rng, p_rng ) );
if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
mpi_swap( &ctx->P, &ctx->Q );
if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
continue;
MPI_CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
if( mpi_msb( &ctx->N ) != nbits )
continue;
MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) );
}
while( mpi_cmp_int( &G, 1 ) != 0 );
/*
* D = E^-1 mod ((P-1)*(Q-1))
* DP = D mod (P - 1)
* DQ = D mod (Q - 1)
* QP = Q^-1 mod P
*/
MPI_CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H ) );
MPI_CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) );
MPI_CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) );
MPI_CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) );
ctx->len = ( mpi_msb( &ctx->N ) + 7 ) >> 3;
cleanup:
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
if( ret != 0 )
{
rsa_free( ctx );
return( POLARSSL_ERR_RSA_KEY_GEN_FAILED + ret );
}
return( 0 );
}
#endif
/*
* Check a public RSA key
*/
int rsa_check_pubkey( const rsa_context *ctx )
{
if( !ctx->N.p || !ctx->E.p )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
if( ( ctx->N.p[0] & 1 ) == 0 ||
( ctx->E.p[0] & 1 ) == 0 )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
if( mpi_msb( &ctx->N ) < 128 ||
mpi_msb( &ctx->N ) > POLARSSL_MPI_MAX_BITS )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
if( mpi_msb( &ctx->E ) < 2 ||
mpi_msb( &ctx->E ) > 64 )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
return( 0 );
}
/*
* Check a private RSA key
*/
int rsa_check_privkey( const rsa_context *ctx )
{
int ret;
mpi PQ, DE, P1, Q1, H, I, G, G2, L1, L2, DP, DQ, QP;
if( ( ret = rsa_check_pubkey( ctx ) ) != 0 )
return( ret );
if( !ctx->P.p || !ctx->Q.p || !ctx->D.p )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
mpi_init( &PQ ); mpi_init( &DE ); mpi_init( &P1 ); mpi_init( &Q1 );
mpi_init( &H ); mpi_init( &I ); mpi_init( &G ); mpi_init( &G2 );
mpi_init( &L1 ); mpi_init( &L2 ); mpi_init( &DP ); mpi_init( &DQ );
mpi_init( &QP );
MPI_CHK( mpi_mul_mpi( &PQ, &ctx->P, &ctx->Q ) );
MPI_CHK( mpi_mul_mpi( &DE, &ctx->D, &ctx->E ) );
MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) );
MPI_CHK( mpi_gcd( &G2, &P1, &Q1 ) );
MPI_CHK( mpi_div_mpi( &L1, &L2, &H, &G2 ) );
MPI_CHK( mpi_mod_mpi( &I, &DE, &L1 ) );
MPI_CHK( mpi_mod_mpi( &DP, &ctx->D, &P1 ) );
MPI_CHK( mpi_mod_mpi( &DQ, &ctx->D, &Q1 ) );
MPI_CHK( mpi_inv_mod( &QP, &ctx->Q, &ctx->P ) );
/*
* Check for a valid PKCS1v2 private key
*/
if( mpi_cmp_mpi( &PQ, &ctx->N ) != 0 ||
mpi_cmp_mpi( &DP, &ctx->DP ) != 0 ||
mpi_cmp_mpi( &DQ, &ctx->DQ ) != 0 ||
mpi_cmp_mpi( &QP, &ctx->QP ) != 0 ||
mpi_cmp_int( &L2, 0 ) != 0 ||
mpi_cmp_int( &I, 1 ) != 0 ||
mpi_cmp_int( &G, 1 ) != 0 )
{
ret = POLARSSL_ERR_RSA_KEY_CHECK_FAILED;
}
cleanup:
mpi_free( &PQ ); mpi_free( &DE ); mpi_free( &P1 ); mpi_free( &Q1 );
mpi_free( &H ); mpi_free( &I ); mpi_free( &G ); mpi_free( &G2 );
mpi_free( &L1 ); mpi_free( &L2 ); mpi_free( &DP ); mpi_free( &DQ );
mpi_free( &QP );
if( ret == POLARSSL_ERR_RSA_KEY_CHECK_FAILED )
return( ret );
if( ret != 0 )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED + ret );
return( 0 );
}
/*
* Do an RSA public key operation
*/
int rsa_public( rsa_context *ctx,
const unsigned char *input,
unsigned char *output )
{
int ret;
size_t olen;
mpi T;
mpi_init( &T );
MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
{
mpi_free( &T );
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
}
olen = ctx->len;
MPI_CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
MPI_CHK( mpi_write_binary( &T, output, olen ) );
cleanup:
mpi_free( &T );
if( ret != 0 )
return( POLARSSL_ERR_RSA_PUBLIC_FAILED + ret );
return( 0 );
}
#if !defined(POLARSSL_RSA_NO_CRT)
/*
* Generate or update blinding values, see section 10 of:
* KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
* DSS, and other systems. In : Advances in Cryptology—CRYPTO96. Springer
* Berlin Heidelberg, 1996. p. 104-113.
*/
static int rsa_prepare_blinding( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
if( ctx->Vf.p != NULL )
{
/* We already have blinding values, just update them by squaring */
MPI_CHK( mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
MPI_CHK( mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
MPI_CHK( mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
MPI_CHK( mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
return( 0 );
}
/* Unblinding value: Vf = random number */
MPI_CHK( mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
/* Blinding value: Vi = Vf^(-e) mod N */
MPI_CHK( mpi_inv_mod( &ctx->Vi, &ctx->Vf, &ctx->N ) );
MPI_CHK( mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
cleanup:
return( ret );
}
#endif
/*
* Do an RSA private key operation
*/
int rsa_private( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
const unsigned char *input,
unsigned char *output )
{
int ret;
size_t olen;
mpi T, T1, T2;
mpi_init( &T ); mpi_init( &T1 ); mpi_init( &T2 );
MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
#if 0
if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
{
mpi_free( &T );
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
}
#endif
#if defined(POLARSSL_RSA_NO_CRT)
MPI_CHK( mpi_exp_mod( &T, &T, &ctx->D, &ctx->N, &ctx->RN ) );
#else
if( f_rng != NULL )
{
/*
* Blinding
* T = T * Vi mod N
*/
MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
MPI_CHK( mpi_mul_mpi( &T, &T, &ctx->Vi ) );
MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) );
}
/*
* faster decryption using the CRT
*
* T1 = input ^ dP mod P
* T2 = input ^ dQ mod Q
*/
MPI_CHK( mpi_exp_mod( &T1, &T, &ctx->DP, &ctx->P, &ctx->RP ) );
MPI_CHK( mpi_exp_mod( &T2, &T, &ctx->DQ, &ctx->Q, &ctx->RQ ) );
/*
* T = (T1 - T2) * (Q^-1 mod P) mod P
*/
MPI_CHK( mpi_sub_mpi( &T, &T1, &T2 ) );
MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) );
MPI_CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) );
/*
* output = T2 + T * Q
*/
MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) );
MPI_CHK( mpi_add_mpi( &T, &T2, &T1 ) );
if( f_rng != NULL )
{
/*
* Unblind
* T = T * Vf mod N
*/
MPI_CHK( mpi_mul_mpi( &T, &T, &ctx->Vf ) );
MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) );
}
#endif
olen = ctx->len;
MPI_CHK( mpi_write_binary( &T, output, olen ) );
cleanup:
mpi_free( &T ); mpi_free( &T1 ); mpi_free( &T2 );
if( ret != 0 )
return( POLARSSL_ERR_RSA_PRIVATE_FAILED + ret );
return( 0 );
}
#if defined(POLARSSL_PKCS1_V21)
/**
* Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
*
* \param dst buffer to mask
* \param dlen length of destination buffer
* \param src source of the mask generation
* \param slen length of the source buffer
* \param md_ctx message digest context to use
*/
static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, size_t slen,
md_context_t *md_ctx )
{
unsigned char mask[POLARSSL_MD_MAX_SIZE];
unsigned char counter[4];
unsigned char *p;
unsigned int hlen;
size_t i, use_len;
memset( mask, 0, POLARSSL_MD_MAX_SIZE );
memset( counter, 0, 4 );
hlen = md_ctx->md_info->size;
// Generate and apply dbMask
//
p = dst;
while( dlen > 0 )
{
use_len = hlen;
if( dlen < hlen )
use_len = dlen;
md_starts( md_ctx );
md_update( md_ctx, src, slen );
md_update( md_ctx, counter, 4 );
md_finish( md_ctx, mask );
for( i = 0; i < use_len; ++i )
*p++ ^= mask[i];
counter[3]++;
dlen -= use_len;
}
}
#endif
#if defined(POLARSSL_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
*/
int rsa_rsaes_oaep_encrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
const unsigned char *label, size_t label_len,
size_t ilen,
const unsigned char *input,
unsigned char *output )
{
size_t olen;
int ret;
unsigned char *p = output;
unsigned int hlen;
const md_info_t *md_info;
md_context_t md_ctx;
if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
md_info = md_info_from_type( ctx->hash_id );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
olen = ctx->len;
hlen = md_get_size( md_info );
if( olen < ilen + 2 * hlen + 2 || f_rng == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
memset( output, 0, olen );
*p++ = 0;
// Generate a random octet string seed
//
if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
return( POLARSSL_ERR_RSA_RNG_FAILED + ret );
p += hlen;
// Construct DB
//
md( md_info, label, label_len, p );
p += hlen;
p += olen - 2 * hlen - 2 - ilen;
*p++ = 1;
memcpy( p, input, ilen );
md_init_ctx( &md_ctx, md_info );
// maskedDB: Apply dbMask to DB
//
mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
&md_ctx );
// maskedSeed: Apply seedMask to seed
//
mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
&md_ctx );
md_free_ctx( &md_ctx );
return( ( mode == RSA_PUBLIC )
? rsa_public( ctx, output, output )
: rsa_private( ctx, f_rng, p_rng, output, output ) );
}
#endif /* POLARSSL_PKCS1_V21 */
/*
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
*/
int rsa_rsaes_pkcs1_v15_encrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode, size_t ilen,
const unsigned char *input,
unsigned char *output )
{
size_t nb_pad, olen;
int ret;
unsigned char *p = output;
if( ctx->padding != RSA_PKCS_V15 || f_rng == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
olen = ctx->len;
if( olen < ilen + 11 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
nb_pad = olen - 3 - ilen;
*p++ = 0;
if( mode == RSA_PUBLIC )
{
*p++ = RSA_CRYPT;
while( nb_pad-- > 0 )
{
int rng_dl = 100;
do {
ret = f_rng( p_rng, p, 1 );
} while( *p == 0 && --rng_dl && ret == 0 );
// Check if RNG failed to generate data
//
if( rng_dl == 0 || ret != 0)
return POLARSSL_ERR_RSA_RNG_FAILED + ret;
p++;
}
}
else
{
*p++ = RSA_SIGN;
while( nb_pad-- > 0 )
*p++ = 0xFF;
}
*p++ = 0;
memcpy( p, input, ilen );
return( ( mode == RSA_PUBLIC )
? rsa_public( ctx, output, output )
: rsa_private( ctx, f_rng, p_rng, output, output ) );
}
/*
* Add the message padding, then do an RSA operation
*/
int rsa_pkcs1_encrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode, size_t ilen,
const unsigned char *input,
unsigned char *output )
{
switch( ctx->padding )
{
case RSA_PKCS_V15:
return rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
input, output );
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21:
return rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
ilen, input, output );
#endif
default:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
}
#if defined(POLARSSL_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
*/
int rsa_rsaes_oaep_decrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
const unsigned char *label, size_t label_len,
size_t *olen,
const unsigned char *input,
unsigned char *output,
size_t output_max_len )
{
int ret;
size_t ilen;
unsigned char *p;
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
unsigned char lhash[POLARSSL_MD_MAX_SIZE];
unsigned int hlen;
const md_info_t *md_info;
md_context_t md_ctx;
if( ctx->padding != RSA_PKCS_V21 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ilen = ctx->len;
if( ilen < 16 || ilen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, input, buf )
: rsa_private( ctx, f_rng, p_rng, input, buf );
if( ret != 0 )
return( ret );
p = buf;
if( *p++ != 0 )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
md_info = md_info_from_type( ctx->hash_id );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
hlen = md_get_size( md_info );
md_init_ctx( &md_ctx, md_info );
// Generate lHash
//
md( md_info, label, label_len, lhash );
// seed: Apply seedMask to maskedSeed
//
mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
&md_ctx );
// DB: Apply dbMask to maskedDB
//
mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
&md_ctx );
p += hlen;
md_free_ctx( &md_ctx );
// Check validity
//
if( memcmp( lhash, p, hlen ) != 0 )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
p += hlen;
while( *p == 0 && p < buf + ilen )
p++;
if( p == buf + ilen )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
if( *p++ != 0x01 )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
if (ilen - (p - buf) > output_max_len)
return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );
*olen = ilen - (p - buf);
memcpy( output, p, *olen );
return( 0 );
}
#endif /* POLARSSL_PKCS1_V21 */
/*
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
*/
int rsa_rsaes_pkcs1_v15_decrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode, size_t *olen,
const unsigned char *input,
unsigned char *output,
size_t output_max_len)
{
int ret, correct = 1;
size_t ilen, pad_count = 0;
unsigned char *p, *q;
unsigned char bt;
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
if( ctx->padding != RSA_PKCS_V15 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ilen = ctx->len;
if( ilen < 16 || ilen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, input, buf )
: rsa_private( ctx, f_rng, p_rng, input, buf );
if( ret != 0 )
return( ret );
p = buf;
if( *p++ != 0 )
correct = 0;
bt = *p++;
if( ( bt != RSA_CRYPT && mode == RSA_PRIVATE ) ||
( bt != RSA_SIGN && mode == RSA_PUBLIC ) )
{
correct = 0;
}
if( bt == RSA_CRYPT )
{
while( *p != 0 && p < buf + ilen - 1 )
pad_count += ( *p++ != 0 );
correct &= ( *p == 0 && p < buf + ilen - 1 );
q = p;
// Also pass over all other bytes to reduce timing differences
//
while ( q < buf + ilen - 1 )
pad_count += ( *q++ != 0 );
// Prevent compiler optimization of pad_count
//
correct |= pad_count & 0x100000; /* Always 0 unless 1M bit keys */
p++;
}
else
{
while( *p == 0xFF && p < buf + ilen - 1 )
pad_count += ( *p++ == 0xFF );
correct &= ( *p == 0 && p < buf + ilen - 1 );
q = p;
// Also pass over all other bytes to reduce timing differences
//
while ( q < buf + ilen - 1 )
pad_count += ( *q++ != 0 );
// Prevent compiler optimization of pad_count
//
correct |= pad_count & 0x100000; /* Always 0 unless 1M bit keys */
p++;
}
if( correct == 0 )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
if (ilen - (p - buf) > output_max_len)
return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );
*olen = ilen - (p - buf);
memcpy( output, p, *olen );
return( 0 );
}
/*
* Do an RSA operation, then remove the message padding
*/
int rsa_pkcs1_decrypt( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode, size_t *olen,
const unsigned char *input,
unsigned char *output,
size_t output_max_len)
{
switch( ctx->padding )
{
case RSA_PKCS_V15:
return rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
input, output, output_max_len );
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21:
return rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
olen, input, output, output_max_len );
#endif
default:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
}
#if defined(POLARSSL_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
*/
int rsa_rsassa_pss_sign( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
int hash_id,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig )
{
size_t olen;
unsigned char *p = sig;
unsigned char salt[POLARSSL_MD_MAX_SIZE];
unsigned int slen, hlen, offset = 0;
int ret;
size_t msb;
const md_info_t *md_info;
md_context_t md_ctx;
if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
olen = ctx->len;
switch( hash_id )
{
case SIG_RSA_MD2:
case SIG_RSA_MD4:
case SIG_RSA_MD5:
hashlen = 16;
break;
case SIG_RSA_SHA1:
hashlen = 20;
break;
case SIG_RSA_SHA224:
hashlen = 28;
break;
case SIG_RSA_SHA256:
hashlen = 32;
break;
case SIG_RSA_SHA384:
hashlen = 48;
break;
case SIG_RSA_SHA512:
hashlen = 64;
break;
default:
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
}
md_info = md_info_from_type( ctx->hash_id );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
hlen = md_get_size( md_info );
slen = hlen;
if( olen < hlen + slen + 2 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
memset( sig, 0, olen );
msb = mpi_msb( &ctx->N ) - 1;
// Generate salt of length slen
//
if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
return( POLARSSL_ERR_RSA_RNG_FAILED + ret );
// Note: EMSA-PSS encoding is over the length of N - 1 bits
//
msb = mpi_msb( &ctx->N ) - 1;
p += olen - hlen * 2 - 2;
*p++ = 0x01;
memcpy( p, salt, slen );
p += slen;
md_init_ctx( &md_ctx, md_info );
// Generate H = Hash( M' )
//
md_starts( &md_ctx );
md_update( &md_ctx, p, 8 );
md_update( &md_ctx, hash, hashlen );
md_update( &md_ctx, salt, slen );
md_finish( &md_ctx, p );
// Compensate for boundary condition when applying mask
//
if( msb % 8 == 0 )
offset = 1;
// maskedDB: Apply dbMask to DB
//
mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );
md_free_ctx( &md_ctx );
msb = mpi_msb( &ctx->N ) - 1;
sig[0] &= 0xFF >> ( olen * 8 - msb );
p += hlen;
*p++ = 0xBC;
return( ( mode == RSA_PUBLIC )
? rsa_public( ctx, sig, sig )
: rsa_private( ctx, f_rng, p_rng, sig, sig ) );
}
#endif /* POLARSSL_PKCS1_V21 */
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
*/
/*
* Do an RSA operation to sign the message digest
*/
int rsa_rsassa_pkcs1_v15_sign( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
int hash_id,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig )
{
size_t nb_pad, olen;
unsigned char *p = sig;
if( ctx->padding != RSA_PKCS_V15 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
olen = ctx->len;
switch( hash_id )
{
case SIG_RSA_RAW:
nb_pad = olen - 3 - hashlen;
break;
case SIG_RSA_MD2:
case SIG_RSA_MD4:
case SIG_RSA_MD5:
nb_pad = olen - 3 - 34;
break;
case SIG_RSA_SHA1:
nb_pad = olen - 3 - 35;
break;
case SIG_RSA_SHA224:
nb_pad = olen - 3 - 47;
break;
case SIG_RSA_SHA256:
nb_pad = olen - 3 - 51;
break;
case SIG_RSA_SHA384:
nb_pad = olen - 3 - 67;
break;
case SIG_RSA_SHA512:
nb_pad = olen - 3 - 83;
break;
default:
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
}
if( ( nb_pad < 8 ) || ( nb_pad > olen ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
*p++ = 0;
*p++ = RSA_SIGN;
memset( p, 0xFF, nb_pad );
p += nb_pad;
*p++ = 0;
switch( hash_id )
{
case SIG_RSA_RAW:
memcpy( p, hash, hashlen );
break;
case SIG_RSA_MD2:
memcpy( p, ASN1_HASH_MDX, 18 );
memcpy( p + 18, hash, 16 );
p[13] = 2; break;
case SIG_RSA_MD4:
memcpy( p, ASN1_HASH_MDX, 18 );
memcpy( p + 18, hash, 16 );
p[13] = 4; break;
case SIG_RSA_MD5:
memcpy( p, ASN1_HASH_MDX, 18 );
memcpy( p + 18, hash, 16 );
p[13] = 5; break;
case SIG_RSA_SHA1:
memcpy( p, ASN1_HASH_SHA1, 15 );
memcpy( p + 15, hash, 20 );
break;
case SIG_RSA_SHA224:
memcpy( p, ASN1_HASH_SHA2X, 19 );
memcpy( p + 19, hash, 28 );
p[1] += 28; p[14] = 4; p[18] += 28; break;
case SIG_RSA_SHA256:
memcpy( p, ASN1_HASH_SHA2X, 19 );
memcpy( p + 19, hash, 32 );
p[1] += 32; p[14] = 1; p[18] += 32; break;
case SIG_RSA_SHA384:
memcpy( p, ASN1_HASH_SHA2X, 19 );
memcpy( p + 19, hash, 48 );
p[1] += 48; p[14] = 2; p[18] += 48; break;
case SIG_RSA_SHA512:
memcpy( p, ASN1_HASH_SHA2X, 19 );
memcpy( p + 19, hash, 64 );
p[1] += 64; p[14] = 3; p[18] += 64; break;
default:
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
}
return( ( mode == RSA_PUBLIC )
? rsa_public( ctx, sig, sig )
: rsa_private( ctx, f_rng, p_rng, sig, sig ) );
}
/*
* Do an RSA operation to sign the message digest
*/
int rsa_pkcs1_sign( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
int hash_id,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig )
{
(void)f_rng;
(void)p_rng;
switch( ctx->padding )
{
case RSA_PKCS_V15:
return rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, hash_id,
hashlen, hash, sig );
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21:
return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, hash_id,
hashlen, hash, sig );
#endif
default:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
}
#if defined(POLARSSL_PKCS1_V21)
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
*/
int rsa_rsassa_pss_verify( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
int hash_id,
unsigned int hashlen,
const unsigned char *hash,
unsigned char *sig )
{
int ret;
size_t siglen;
unsigned char *p;
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
unsigned char result[POLARSSL_MD_MAX_SIZE];
unsigned char zeros[8];
unsigned int hlen;
size_t slen, msb;
const md_info_t *md_info;
md_context_t md_ctx;
if( ctx->padding != RSA_PKCS_V21 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
siglen = ctx->len;
if( siglen < 16 || siglen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, sig, buf )
: rsa_private( ctx, f_rng, p_rng, sig, buf );
if( ret != 0 )
return( ret );
p = buf;
if( buf[siglen - 1] != 0xBC )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
switch( hash_id )
{
case SIG_RSA_MD2:
case SIG_RSA_MD4:
case SIG_RSA_MD5:
hashlen = 16;
break;
case SIG_RSA_SHA1:
hashlen = 20;
break;
case SIG_RSA_SHA224:
hashlen = 28;
break;
case SIG_RSA_SHA256:
hashlen = 32;
break;
case SIG_RSA_SHA384:
hashlen = 48;
break;
case SIG_RSA_SHA512:
hashlen = 64;
break;
default:
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
}
md_info = md_info_from_type( ctx->hash_id );
if( md_info == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
hlen = md_get_size( md_info );
slen = siglen - hlen - 1;
memset( zeros, 0, 8 );
// Note: EMSA-PSS verification is over the length of N - 1 bits
//
msb = mpi_msb( &ctx->N ) - 1;
// Compensate for boundary condition when applying mask
//
if( msb % 8 == 0 )
{
p++;
siglen -= 1;
}
if( buf[0] >> ( 8 - siglen * 8 + msb ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
md_init_ctx( &md_ctx, md_info );
mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );
buf[0] &= 0xFF >> ( siglen * 8 - msb );
while( *p == 0 && p < buf + siglen )
p++;
if( p == buf + siglen ||
*p++ != 0x01 )
{
md_free_ctx( &md_ctx );
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
slen -= p - buf;
// Generate H = Hash( M' )
//
md_starts( &md_ctx );
md_update( &md_ctx, zeros, 8 );
md_update( &md_ctx, hash, hashlen );
md_update( &md_ctx, p, slen );
md_finish( &md_ctx, result );
md_free_ctx( &md_ctx );
if( memcmp( p + slen, result, hlen ) == 0 )
return( 0 );
else
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
#endif /* POLARSSL_PKCS1_V21 */
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
*/
int rsa_rsassa_pkcs1_v15_verify( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
int hash_id,
unsigned int hashlen,
const unsigned char *hash,
const unsigned char *sig )
{
int ret;
size_t len, siglen;
unsigned char *p, c;
unsigned char buf[POLARSSL_MPI_MAX_SIZE];
if( ctx->padding != RSA_PKCS_V15 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
siglen = ctx->len;
if( siglen < 16 || siglen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, sig, buf )
: rsa_private( ctx, f_rng, p_rng, sig, buf );
if( ret != 0 )
return( ret );
p = buf;
if( *p++ != 0 || *p++ != RSA_SIGN )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
while( *p != 0 )
{
if( p >= buf + siglen - 1 || *p != 0xFF )
return( POLARSSL_ERR_RSA_INVALID_PADDING );
p++;
}
p++;
len = siglen - ( p - buf );
if( len == 33 && hash_id == SIG_RSA_SHA1 )
{
if( memcmp( p, ASN1_HASH_SHA1_ALT, 13 ) == 0 &&
memcmp( p + 13, hash, 20 ) == 0 )
return( 0 );
else
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
if( len == 34 )
{
c = p[13];
p[13] = 0;
if( memcmp( p, ASN1_HASH_MDX, 18 ) != 0 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
if( ( c == 2 && hash_id == SIG_RSA_MD2 ) ||
( c == 4 && hash_id == SIG_RSA_MD4 ) ||
( c == 5 && hash_id == SIG_RSA_MD5 ) )
{
if( memcmp( p + 18, hash, 16 ) == 0 )
return( 0 );
else
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
}
if( len == 35 && hash_id == SIG_RSA_SHA1 )
{
if( memcmp( p, ASN1_HASH_SHA1, 15 ) == 0 &&
memcmp( p + 15, hash, 20 ) == 0 )
return( 0 );
else
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
if( ( len == 19 + 28 && p[14] == 4 && hash_id == SIG_RSA_SHA224 ) ||
( len == 19 + 32 && p[14] == 1 && hash_id == SIG_RSA_SHA256 ) ||
( len == 19 + 48 && p[14] == 2 && hash_id == SIG_RSA_SHA384 ) ||
( len == 19 + 64 && p[14] == 3 && hash_id == SIG_RSA_SHA512 ) )
{
c = p[1] - 17;
p[1] = 17;
p[14] = 0;
if( p[18] == c &&
memcmp( p, ASN1_HASH_SHA2X, 18 ) == 0 &&
memcmp( p + 19, hash, c ) == 0 )
return( 0 );
else
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
if( len == hashlen && hash_id == SIG_RSA_RAW )
{
if( memcmp( p, hash, hashlen ) == 0 )
return( 0 );
else
return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
/*
* Do an RSA operation and check the message digest
*/
int rsa_pkcs1_verify( rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng,
int mode,
int hash_id,
unsigned int hashlen,
const unsigned char *hash,
const unsigned char *sig )
{
switch( ctx->padding )
{
case RSA_PKCS_V15:
return rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode,
hash_id, hashlen, hash, sig );
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21:
return rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, hash_id,
hashlen, hash, sig );
#endif
default:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
}
/*
* Free the components of an RSA key
*/
void rsa_free( rsa_context *ctx )
{
mpi_free( &ctx->Vi ); mpi_free( &ctx->Vf );
mpi_free( &ctx->RQ ); mpi_free( &ctx->RP ); mpi_free( &ctx->RN );
mpi_free( &ctx->QP ); mpi_free( &ctx->DQ ); mpi_free( &ctx->DP );
mpi_free( &ctx->Q ); mpi_free( &ctx->P ); mpi_free( &ctx->D );
mpi_free( &ctx->E ); mpi_free( &ctx->N );
}
#if defined(POLARSSL_SELF_TEST)
#include "polarssl/sha1.h"
/*
* Example RSA-1024 keypair, for test purposes
*/
#define KEY_LEN 128
#define RSA_N "9292758453063D803DD603D5E777D788" \
"8ED1D5BF35786190FA2F23EBC0848AEA" \
"DDA92CA6C3D80B32C4D109BE0F36D6AE" \
"7130B9CED7ACDF54CFC7555AC14EEBAB" \
"93A89813FBF3C4F8066D2D800F7C38A8" \
"1AE31942917403FF4946B0A83D3D3E05" \
"EE57C6F5F5606FB5D4BC6CD34EE0801A" \
"5E94BB77B07507233A0BC7BAC8F90F79"
#define RSA_E "10001"
#define RSA_D "24BF6185468786FDD303083D25E64EFC" \
"66CA472BC44D253102F8B4A9D3BFA750" \
"91386C0077937FE33FA3252D28855837" \
"AE1B484A8A9A45F7EE8C0C634F99E8CD" \
"DF79C5CE07EE72C7F123142198164234" \
"CABB724CF78B8173B9F880FC86322407" \
"AF1FEDFDDE2BEB674CA15F3E81A1521E" \
"071513A1E85B5DFA031F21ECAE91A34D"
#define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
"2C01CAD19EA484A87EA4377637E75500" \
"FCB2005C5C7DD6EC4AC023CDA285D796" \
"C3D9E75E1EFC42488BB4F1D13AC30A57"
#define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
"E211C2B9E5DB1ED0BF61D0D9899620F4" \
"910E4168387E3C30AA1E00C339A79508" \
"8452DD96A9A5EA5D9DCA68DA636032AF"
#define RSA_DP "C1ACF567564274FB07A0BBAD5D26E298" \
"3C94D22288ACD763FD8E5600ED4A702D" \
"F84198A5F06C2E72236AE490C93F07F8" \
"3CC559CD27BC2D1CA488811730BB5725"
#define RSA_DQ "4959CBF6F8FEF750AEE6977C155579C7" \
"D8AAEA56749EA28623272E4F7D0592AF" \
"7C1F1313CAC9471B5C523BFE592F517B" \
"407A1BD76C164B93DA2D32A383E58357"
#define RSA_QP "9AE7FBC99546432DF71896FC239EADAE" \
"F38D18D2B2F0E2DD275AA977E2BF4411" \
"F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \
"A74206CEC169D74BF5A8C50D6F48EA08"
#define PT_LEN 24
#define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
"\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
static int myrand( void *rng_state, unsigned char *output, size_t len )
{
size_t i;
if( rng_state != NULL )
rng_state = NULL;
for( i = 0; i < len; ++i )
output[i] = rand();
return( 0 );
}
/*
* Checkup routine
*/
int rsa_self_test( int verbose )
{
size_t len;
rsa_context rsa;
unsigned char rsa_plaintext[PT_LEN];
unsigned char rsa_decrypted[PT_LEN];
unsigned char rsa_ciphertext[KEY_LEN];
#if defined(POLARSSL_SHA1_C)
unsigned char sha1sum[20];
#endif
rsa_init( &rsa, RSA_PKCS_V15, 0 );
rsa.len = KEY_LEN;
mpi_read_string( &rsa.N , 16, RSA_N );
mpi_read_string( &rsa.E , 16, RSA_E );
mpi_read_string( &rsa.D , 16, RSA_D );
mpi_read_string( &rsa.P , 16, RSA_P );
mpi_read_string( &rsa.Q , 16, RSA_Q );
mpi_read_string( &rsa.DP, 16, RSA_DP );
mpi_read_string( &rsa.DQ, 16, RSA_DQ );
mpi_read_string( &rsa.QP, 16, RSA_QP );
if( verbose != 0 )
printf( " RSA key validation: " );
if( rsa_check_pubkey( &rsa ) != 0 ||
rsa_check_privkey( &rsa ) != 0 )
{
if( verbose != 0 )
printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
printf( "passed\n PKCS#1 encryption : " );
memcpy( rsa_plaintext, RSA_PT, PT_LEN );
if( rsa_pkcs1_encrypt( &rsa, &myrand, NULL, RSA_PUBLIC, PT_LEN,
rsa_plaintext, rsa_ciphertext ) != 0 )
{
if( verbose != 0 )
printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
printf( "passed\n PKCS#1 decryption : " );
if( rsa_pkcs1_decrypt( &rsa, &myrand, NULL, RSA_PRIVATE, &len,
rsa_ciphertext, rsa_decrypted,
sizeof(rsa_decrypted) ) != 0 )
{
if( verbose != 0 )
printf( "failed\n" );
return( 1 );
}
if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
{
if( verbose != 0 )
printf( "failed\n" );
return( 1 );
}
#if defined(POLARSSL_SHA1_C)
if( verbose != 0 )
printf( "passed\n PKCS#1 data sign : " );
sha1( rsa_plaintext, PT_LEN, sha1sum );
if( rsa_pkcs1_sign( &rsa, &myrand, NULL, RSA_PRIVATE, SIG_RSA_SHA1, 20,
sha1sum, rsa_ciphertext ) != 0 )
{
if( verbose != 0 )
printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
printf( "passed\n PKCS#1 sig. verify: " );
if( rsa_pkcs1_verify( &rsa, &myrand, NULL, RSA_PUBLIC, SIG_RSA_SHA1, 20,
sha1sum, rsa_ciphertext ) != 0 )
{
if( verbose != 0 )
printf( "failed\n" );
return( 1 );
}
if( verbose != 0 )
printf( "passed\n\n" );
#endif /* POLARSSL_SHA1_C */
rsa_free( &rsa );
return( 0 );
}
#endif
#endif