pico-hsm/call-ec.c

137 lines
3.4 KiB
C
Raw Normal View History

/*
* call-ec.c - interface between Gnuk and Elliptic curve over GF(prime)
*
* Copyright (C) 2013, 2014, 2017 Free Software Initiative of Japan
* Author: NIIBE Yutaka <gniibe@fsij.org>
*
* This file is a part of Gnuk, a GnuPG USB Token implementation.
*
* Gnuk is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Gnuk is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "field-group-select.h"
/* We are little-endian in the computation, but the protocol is big-endian. */
#define ECDSA_BYTE_SIZE 32
#define ECDH_BYTE_SIZE 32
int
FUNC(ecdsa_sign) (const uint8_t *hash, uint8_t *output,
const uint8_t *key_data)
{
int i;
bn256 r[1], s[1], z[1], d[1];
uint8_t *p;
p = (uint8_t *)d;
for (i = 0; i < ECDSA_BYTE_SIZE; i++)
p[ECDSA_BYTE_SIZE - i - 1] = key_data[i];
p = (uint8_t *)z;
for (i = 0; i < ECDSA_BYTE_SIZE; i++)
p[ECDSA_BYTE_SIZE - i - 1] = hash[i];
FUNC(ecdsa) (r, s, z, d);
p = (uint8_t *)r;
for (i = 0; i < ECDSA_BYTE_SIZE; i++)
*output++ = p[ECDSA_BYTE_SIZE - i - 1];
p = (uint8_t *)s;
for (i = 0; i < ECDSA_BYTE_SIZE; i++)
*output++ = p[ECDSA_BYTE_SIZE - i - 1];
return 0;
}
int
FUNC(ecc_compute_public) (const uint8_t *key_data, uint8_t *pubkey)
{
uint8_t *p, *p1;
ac q[1];
bn256 k[1];
int i;
p = (uint8_t *)k;
for (i = 0; i < ECDSA_BYTE_SIZE; i++)
p[ECDSA_BYTE_SIZE - i - 1] = key_data[i];
if (FUNC(compute_kG) (q, k) < 0)
return -1;
p = pubkey;
p1 = (uint8_t *)q->x;
for (i = 0; i < ECDSA_BYTE_SIZE; i++)
*p++ = p1[ECDSA_BYTE_SIZE - i - 1];
p1 = (uint8_t *)q->y;
for (i = 0; i < ECDSA_BYTE_SIZE; i++)
*p++ = p1[ECDSA_BYTE_SIZE - i - 1];
return 0;
}
int
FUNC(ecdh_decrypt) (const uint8_t *input, uint8_t *output,
const uint8_t *key_data)
{
bn256 k[1];
ac X[1], P[1];
int i;
uint8_t *p0;
const uint8_t *p1;
int r;
p0 = (uint8_t *)k;
for (i = 0; i < ECDH_BYTE_SIZE; i++)
p0[ECDH_BYTE_SIZE - i - 1] = key_data[i];
p1 = input+1; /* skip '04' */
p0 = (uint8_t *)P->x;
for (i = 0; i < ECDH_BYTE_SIZE; i++)
p0[ECDH_BYTE_SIZE - i - 1] = *p1++;
p0 = (uint8_t *)P->y;
for (i = 0; i < ECDH_BYTE_SIZE; i++)
p0[ECDH_BYTE_SIZE - i - 1] = *p1++;
r = FUNC(compute_kP) (X, k, P);
if (r == 0)
{
p0 = output;
p1 = (const uint8_t *)X->x;
*p0++ = 4;
for (i = 0; i < ECDH_BYTE_SIZE; i++)
*p0++ = p1[ECDH_BYTE_SIZE - i - 1];
p1 = (const uint8_t *)X->y;
for (i = 0; i < ECDH_BYTE_SIZE; i++)
*p0++ = p1[ECDH_BYTE_SIZE - i - 1];
}
return r;
}
/**
* @brief Check if a secret d0 is valid or not
*
* @param D0 scalar D0: secret
* @param D1 scalar D1: secret candidate N-D0
*
* Return 0 on error.
* Return -1 when D1 should be used as the secret
* Return 1 when D0 should be used as the secret
*/
int
FUNC(ecc_check_secret) (const uint8_t *d0, uint8_t *d1)
{
return FUNC(check_secret) ((const bn256 *)d0, (bn256 *)d1);
}